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Abstract- A recent trend in automatic speech recognition 
systems is the use of continuous mixture-density hidden Markov 
models (HMM’s). Despite the good recognition performance that 
these systems achieve on average in large vocabulary applications, 
there is a large variability in performance across speakers. 
Performance degrades dramatically when the user is radically dif- 
ferent from the training population. A popular technique that can 
improve the performance and robustness of a speech recognition 
system is adapting speech models to the speaker, and more gen- 
erally to the channel and the task. In continuous mixture-density 
HMM’s the number of component densities is typically very 
large, and it may not be feasible to acquire a sufficient amount 
of adaptation data for robust maximum-likelihood estimates. To 
solve this problem, we propose a constrained estimation technique 
for Gaussian mixture densities. The algorithm is evaluated on the 
large-vocabulary Wall Street Journal corpus for both native and 
nonnative speakers of American English. For nonnative speakers, 
the recognition error rate is approximately halved with only a 
small amount of adaptation data, and it approaches the speaker- 
independent accuracy achieved for native speakers. For native 
speakers, the recognition performance after adaptation improves 
to the accuracy of speaker-dependent systems that use six times 
as much training data. 

I. INTRODUCTION 
ECOGNITION error rates ranging from 10% to 15% R have recently been achieved in the 20 000-word, open- 

vocabulary recognition task on the Wall Street Journal (WSJ) 
corpus [20] using hidden Markov models (HMM’sj [2], [12] 
with continuous-mixture observation densities [ 191. However, 
this recognition performance is far from satisfactory for most 
usable large-vocabulary recognition (LVR) applications. More- 
over, recognition accuracy is very sensitive to speaker vari- 
ability and will degrade much more in the move from the 
lab to the field. Speaker-, channel-, or other task-dependent 
solutions require excessive collections of training data and 
decrease system utility and portability. A popular technique 
that can be used to improve the performance and robustness 
of a speech recognition system is adapting the speech model to 
the speaker, channel, and task [51, [231, [SI, [151. In this work, 
we consider adaptation to the speaker, although the techniques 
can be modified to be used at other levels. 
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In this paper, we will present novel adaptation techniques 
for state-of-the-art continuous mixture-density HMM’s. It has 
recently been shown that HMM’s that use continuous-density 
probability distributions achieve better recognition perfor- 
mance than those that use discrete-density distributions [ 191. 
After 181, we refer to a group of Gaussians that are used 
to form a Gaussian mixture distribution as a genone, to 
the collection of these groups as genones, and to HMM 
systems with an arbitrary degree of genone sharing’ as genonic 
HMM’s. The degree of genone sharing significantly affects 
recognition performance 181. HMM systems with less sharing 
have typically a smaller number of Gaussians per genone 
and a larger total number of Gaussians than systems with 
fewer genones. The increase in the number of Gaussians is 
usually over-compensated for by the decrease in the number 
of mixture weights, and systems with less sharing have a 
smaller number of parameters. Hence, they are more suited to 
adaptation than tied-mixture HMM’s (single-genone systems, 
with all HMM states sharing the same Gaussians in their 
mixture distributions). 

Two families of adaptation schemes have been proposed 
in the past. One transforms the speaker’s feature space to 
“match” the space of the training population 161, 1181, [41. 
The transformation can be applied either directly to the fea- 
tures or to the speech models. The second main family of 
adaptation algorithms follows a Bayesian approach, where 
the speaker-independent information is encapsulated in the 
prior distributions [5], [15]. The transformation approach has 
the advantage of simplicity. In addition, if the number of 
free parameters is small, then transformation techniques adapt 
to the user with only a small amount of adaptation speech 
(quick adaptation). The Bayesian approach usually has nice 
asymptotic properties, that is, speaker-adaptive performance 
will converge to speaker-dependent performance as the amount 
of adaptation speech increases. However, the adaptation rate 
is usually slow. 

For HMM’s with a small degree of sharing and a large 
total number of Gaussians, it is impractical to expect enough 
adaptation data to obtain robust maximum-likelihood (ML) 
estimates of all the Gaussians. To deal with the problem of 
adapting a large number of Gaussians from small amounts 
of adaptation speech, we present a new algorithm for the 
constrained estimation of genones. The algorithm can also 
be viewed as estimating a transformation of the speaker- 

‘By degree of genone sharing we refer to the average number of dis- 
tinct HMM states that share the same genone’s Gaussians in their output 
distributions. 
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independent models by maximizing the likelihood of the 
adaptation data. In contrast to previous adaptation schemes 
based on feature transformations, our algorithm has the desir- 
able property of being text-independent. It does not require 
the new speaker to record sentences with the same text 
recorded previously by some reference speakers, nor does it 
require a time warping between the new speaker’s utterances 
and those uttered by the reference speakers. In Bayesian 
adaptation techniques, the limited amount of speaker-specific 
data is combined with the speaker-independent models in an 
optimal manner. Maximum a posteriori (MAP) reestimation 
for continuous Gaussian-mixture HAM’S is equivalent to 
linearly combining the speaker-dependent sufficient statistics 
with the speaker-independent priors [16]. Typically, only the 
Gaussians of the speaker-independent models that are most 
likely to have generated some of the adaptation data will be 
adapted to the speaker. This behavior may be problematic for 
continuous J3MM’s with a large number of Gaussians, since 
only a small percentage of the Gaussians will be “seen” in 
the adaptation data. In contrast, our adaptation scheme can 
adapt a Gaussian without requiring training examples of this 
specific Gaussian to exist in the adaptation data. By using 
a constrained reestimation method, our algorithm is able to 
extrapolate and adapt Gaussians in a genone based on data that 
were most likely generated by other Gaussians of the same or 
other neighboring genones. 

This paper is organized as follows. Section I1 presents an 
algorithm for the constrained estimation of Gaussian mixtures 
based on the expectation-maximization (EM) algorithm. We 
give the solution for both the static case of a single random 
vector modeled by a Gaussian mixture density and the dynamic 
case of a vector process modeled using HMM’s with Gaussian 
mixtures as output distributions. In Section 111, we discuss the 
application of the main algorithm to the speaker adaptation 
problem. Section IV describes experiments and presents re- 
sults on the WSJ corpus. Finally, discussion of results and 
conclusions appear in Section V. 

11. CONSTRAINED ESTIMATION OF GAUSSIAN MIXTURES 

One speaker adaptation paradigm that fits well with the 
overall approach of continuous-density HMM’s with shared 
Gaussian codebooks is to employ a transformation of the 
speaker-independent models to best correspond to the available 
adaptation data. Such a transformation can be efficiently 
achieved by assuming that the Gaussians in each genone of the 
speaker-adapted system are obtained through a transformation 
of the corresponding speaker-independent Gaussians. This 
transformation can be either unique for each genone, or shared 
by different genones. We choose to apply the transformation 
at the distribution level, rather than transforming the data di- 
rectly, since we can then use the EM algorithm to estimate the 
transformation parameters by maximizing the likelihood of the 
adaptation data. The advantage of using the EM algorithm is 
that we can estimate the transformation from new-speaker data 
alone. This eliminates the need of some form of time alignment 
between the new-speaker data and the training- or reference- 
speaker data that previous transformation-based techniques 

needed [6], [18]. The estimation of the transformation can also 
be viewed as a constrained estimation of Gaussian mixtures. 

A. Estimation of a Single Gaussian-Mixture 
To better illustrate the constrained Gaussian estimation 

method, we first present the estimation formulae for a single 
Gaussian-mixture density. In Section 11-B, we extend the 
method for mixture densities as observation distributions in 
hidden Markov models. Let us consider a Gaussian mixture 
density of the form 

NU’ 

f ( x ;  8) = f ( x ;  A,  b )  = p ( w i ) N ( z ;  Ami + b ,  ASiAT) (1) 
z = l  

where the model parameters are B = [ A ,  b],  Nu is the number 
of mixture components, and we have the constraint that 

i=I 

We assume that the parameters [mi. Si,  1: = 1, . . . . Nu] are 
fixed, and that the matrices Si are positive definite. 

This model is equivalent to assuming that the random vector 
x is obtained through an affine transformation x = Ay+b from 
the unobserved vector y that has a known mixture density 

(3 )  

ML estimation of the constrained Gaussian-mixture model is, 
therefore, equivalent to estimating the regression parameters 
A,  b using only observations of the dependent variable and the 
knowledge of the distribution of the unobserved variable y. 

As shown in [21], the EM algorithm can be used to obtain 
ML estimates of the parameters of a Gaussian-mixture density 
in the unconstrained case. The EM algorithm can also be used 
to estimate the model parameters [ A ,  b] in the constrained case. 
At each EM iteration, the new parameter estimates are obtained 
by maximizing the auxiliary function [7] 

8, = argmaxE{logP(X,Rle)lX,B,} (4) 
8 

where 0, = [A,, bo] are the previous parameter estimates, X 
denotes the collection of observed samples z, and R denotes 
the collection of the corresponding unobserved mixture indices 
W i .  

Each iteration of the EM algorithm involves an expectation 
(E-step) and a maximization step (M-step). In the Appendix, 
we show that the E-step involves the computation of the 
sufficient statistics 

1 
n2 

1 

1 1 2  = - P(w* 
5 

A , .  b,;x)(z - pi) ( .  - (6) 

S 
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where the posterior probabilities can be computed using 
Bayes' rule 

The EM algorithm can be used to estimate the parameters 
of this model. The unobserved variables are the HMM state 
and the mixture index, and the EM algorithm in this case 
takes the form of the well-known Baum-Welch algorithm [3]. 
The formulae for the conventional reestimation of HMM's 
with Gaussian mixture densities can be derived by applying 

. 

(*) 

P(wi)N(z; Aomi + bo,  AoSiAF) 

E;"-; P ( w i ) N ( z ;  Aomi + bo,  A o S i A T )  
P ( w i I A o ,  bo,  .) = 

For the case, and therefore for *e Of the Baum-Welch algorithm; see, for example, [13]. In our 
case, since we constrain the estimation of the Gaussians, the covariances and a matrix A, the quantities 

Si = s:,A = a E .  - - 2  ' - ci and m, are In this case, reestimation formulae are different, and the training procedure 
the M-step is equivalent to solving the following quadratic using the Baum-Welch algorithm is as summarized below. 
equation (see Appendix): 

where the offset b is given by 

b z ( E 7 - a  NU 

i=l i=l i=l 

(9) 

1) Initialize all transformations with A o ( g )  = I, b o ( g )  = 
0 , g  = l , . . . , N ,  . Set IC = 0. 

2) E-step: Perform one iteration of the forward-backward 
algorithm on the speech data, using Gaussians trans- 
formed with the current value of the transformations 
O k ( g )  = [ A k ( g ) ,  b k ( g ) ] .  For all component Gaussians 
and all genones g collect the sufficient statistics 

It is straightforward to verify that this equation has real roots. 
For the general multidimensional case-that is, when the 
covariances and the scaling matrix A are not diagonal-the 
M-step is equivalent to solving a system of second-order 
equations. Iterative schemes may be used in the general case. 

B. Estimation of a Gaussian Mixture Density in HMM's 

The constrained estimation of Gaussian mixtures can be 
easily extended for the dynamic case of time-varying processes 
with an underlying discrete Markovian state. Specifically, 
consider the finite-state process [st .  t = 1, . . . , TI, which 
can be modeled as a first-order Markov chain with transition 
probabilities a13 = P ( s t  = j lst- l  = 2 ) .  This state process can 
generate an observed process [zt] through a stochastic mapping 
P(z t l s t ) ,  and the overall model for the process [zt] is a hidden 
Markov model. In the reestimation formulae for HMM's with 
Gaussian mixture output distributions of the form 

NU 

P(ztlst) = CP(w,Ist)N(zt; A ( g ) m , ( g )  
1=1 

+ b b ) ,  A ( s ) s 1 ( g ) A T ( g ) )  (11) 

g is the Gaussian codebook (or genone) index. Thus, we 
assume that we have a collection of genones indexed by 
g = 1.. . . . N,, and that the mapping from HMM state st to 
genone is g = y ( s t ) .  The inverse image y-l(g) is the set of 
HMM states that map to the same genone (i.e., the set of HMM 
states that share the same mixture components). As in the 
static case, we assume that the parameters m,(g), S , ( g ) ,  i = 
1. . . . . Nu are fixed, the matrices S , ( g )  are positive definite, 
and the free parameters in the mixtures are the transformation 
parameters A ( g ) .  b ( g )  which, for simplicity, are assumed to 
be genone-dependent. 

t . t€r-'(s) 

where p ( s t )  = p ( s t l X ,  A,) is the probability of being 
at state st at time t given X and the current HMM 
parameters Ak, and & ( g )  is the posterior probability 

(15) 

3) M-step: Compute the new transformation parameters 
[Ak+l(g), b k + l ( g ) ]  using the estimation formulae (9) 
and (10). 

4it(S) = P ( w i ( g ) I A k ( g ) ,  b k k ) ,  z t ,  S t ) .  

4) If another iteration, go to (2). 

111. APPLICATION TO SPEAKER ADAPTATION 

A. Adaptation of Gaussian Codebooks 

For continuous mixture-density HMM's with a large number 
of component mixtures it is impractical to assume that there are 
enough adaptation data available for independent reestimation 
of all the component densities. The constrained estimation that 
we have presented can overcome this problem, since all the 
components within a mixture (or a group of mixtures, if there is 
tying of transformations) are transformed jointly. To see how 
this method can be applied for adaptation, we assume that 
the speaker-independent (SI) HMM model for the SI vector 
process [y t ]  has observation densities of the form 

Psr(Ytlst) = P ( w z I s t ) N ( ? l t ;  m i ( g ) ,  Sdg)) .  (16) 
i=l 

Adaptation of this system can be achieved by jointly trans- 
forming all the Gaussians of each genone. Specifically, we 
assume that, given the genone index of the HMM state st ,  
the speaker-dependent vector process [zt] can be obtained 
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by the underlying process [yt ]  through the transformation 
.Et = A(g)yt + b ( g ) .  In this case, the speaker-adapted (SA) 
observation densities have the form 

NU 

~ ~ ~ ( z t l s t )  = P(~iJs t )N(zt ;  A ( g ) m ; ( g )  
i = l  

+ b ( g ) ,  A ( g ) s i ( g ) A T ( g ) )  (17) 

and only the transformation parameters A ( g ) ,  b ( g ) ,  g = 
1. . . . . Xg need to be estimated during adaptation. We chose 
groups of affine transformations to model the underlying 
relationship between the speaker-independent and the speaker- 
adapted densities for two reasons: first, constraining the 
reestimation of Gaussian mixtures with affine transformations 
results to a mathematically tractable problem; and second, by 
increasing the number of transformations we can achieve a 
good approximation of any underlying relationship. Although 
we presented in this paper the reestimation formulae for a full- 
rank transformation, in our experiments we used independent 
constraints, that is, diagonal covariances and scaling matrices. 

The above algorithm can also be modified to asymptotically 
approach speaker-dependent (SD) training as the amount of 
adaptation speech is increased. We can achieve this by setting 
a threshold and reestimating without constraints all individual 
Gaussians for which the number of samples assigned to them 
is larger than the threshold. Hence, all Gaussians with a 
sufficiently large amount of adaptation speech are reestimated 
independently, whereas Gaussians with little or no adaptation 
data are adapted in groups. In addition, if the total amount 
of adaptation data for a particular genone is less than a 
prespecified threshold, then an identity transformation is used 
for all of its Gaussians. 

Since our Gaussian adaptation algorithm is an instance of 
the Baum-Welch algorithm for HMM’s with constrained mix- 
ture densities, it can be implemented efficiently. Specifically, 
the sufficient statistics (12) through (14) are the same as in 
the case of unconstrained mixture densities. Hence, the E- 
step at each iteration of the adaptation algorithm requires the 
computation and storage of these statistics and is equivalent 
to the E-step of the Baum-Welch algorithm for unconstrained 
mixture densities. The computational requirements of the M- 
step are very small compared to the E-step. 

B. Adaptation of Mixture Weights 

The constrained estimation algorithm that we described in 
the previous sections can be used to adapt the component 
densities of the observation distributions. Another set of pa- 
rameters in a continuous-mixture HMM speech recognizer is 
comprised by the mixture weights P(wilst). When there is 
a high degree of sharing of the mixture components among 
different HMM states-that is, when the number of genones 
-’Vg is small-then the distributions corresponding to different 
HMM states are mainly distinguished by the different mixture 
weights. In HMM’s with less sharing, as N g  increases, there 
is a shift in focus and the discrimination between different 
states is mainly achieved using the component densities. 
Hence, the significance of adapting the mixture weights varies, 
depending on the type of sharing. Since systems with a 

small degree of sharing usually perform better, adaptation 
of the Gaussians may have a greater effect on recognition 
performance. Nevertheless, it may still prove beneficial to 
incorporate in the adaptation scheme some form of adaptation 
of the mixture weights. 

The technique that we chose to use can be characterized as 
“pseudo-Bayesian,’’ Specifically, after adapting the component 
Gaussians as described in Section 111-A, an additional pass 
through the adaptation data is performed using the forward- 
backward algorithm. The SD counts for the mixture weights 
are accumulated, and linearly combined with the SI forward- 
backward counts, in a fashion similar to the one reported in 
[lo]. The weighting factor that is used determines the relative 
prominence given to the adaptation data. The algorithm can 
also be viewed as a pseudo-Bayesian adaptation scheme, where 
the relative contribution of the SI prior knowledge and the SD 
adaptation data is determined experimentally. 

IV. EXPEFXMENTS 

We evaluated our adaptation algorithms on the large- 
vocabulary Wall Street Journal corpus [20]. Experiments were 
carried out using SRI’S DECIPHERTM speech recognition 
system configured with a six-feature front end that outputs 12 
cepstral coefficients (c1 - CI~), cepstral energy (CO), and their 
first- and second-order differences. The cepstral features are 
computed from an FFT filter bank, and subsequent cepstral- 
mean normalization on a sentence basis is performed. We used 
genonic hidden Markov models with an arbitrary degree of 
Gaussian sharing across different HMM states as described in 
[SI. For fast experimentation, we used the progressive search 
framework [ 171: an initial, speaker-independent recognizer 
with a bigram language model outputs word lattices for all the 
utterances in the test set. These word lattices are then rescored 
using speaker-dependent or speaker-adapted models and the 
same bigram language model. We performed two series of 
experiments, on native and nonnative speakers of American 
English, respectively. All experiments were performed on the 
5000-word closed-vocabulary task, and are described below. 

A. Adaptation to Native Speakers 

To compare SI, SD, and SA recognition performance on na- 
tive speakers, we performed an initial study of our adaptation 
algorithms on the phase-0 WSJ corpus. We used phonetically- 
tied mixture HMM systems, with all allophones of the same 
context-independent phone sharing the same mixture compo- 
nents, that is, we used systems with one genone per phone. 
Speaker-independent systems were trained on 3500 sentences 
from 42 male speakers. The different cepstral features were 
modeled as independent observation streams, and each code- 
book used 50 Gaussians for the vector features and 15 Gaus- 
sians for the scalar (energy) features. There was a total of 
6300 phonetic models, each with three states. The number of 
distinct output distributions was clustered down to 6300 (a 
threefold reduction) using state-based clustering [ 1 11, since a 
more compact system with fewer parameters is better suited for 
adaptation. The performance of the adaptation algorithm was 
evaluated on 100 sentences from each of six male speakers 
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Number of adaptation sentences 

Fig. I .  Speaker-independent, speaker-dependent (650 training sentences) 
and speaker-adaptive (varying number of sentences) word error rates for native 
speakers. 

(001, OOb, OOc, OOd, 400, and 431) for varying amounts 
of training/adaptation sentences. The SI word error rate for 
these speakers was 15.08% before clustering the distributions, 
including deletions and insertions. Clustering degraded slightly 
the SI performance to 15.51% word error. Since we used 
a phonetically-tied mixture system with 40 phonetic classes, 
the total number of Gaussians in the system was only 2000 
and 600 for each vector and scalar feature, respectively. We 
were, therefore, able to train a speaker-dependent system for 
each one of the six speakers using 650 utterances, and we 
found that the SD error rate was 11.51%. We then tested 
the adaptation algorithm using a small amount of adaptation 
data (40 phonetically-balanced utterances common across all 
speakers), and the word error rate after adaptation was 13.60%. 
Thus, with 40 adaptation sentences, 60% of the gap between 
SI and SD performance was overcome. 

We then evaluated the SA system performance for varying 
amounts of adaptation data, using three of the speakers. 
The results are summarized in Fig. 1. With 100 adaptation 
sentences, the adaptation scheme achieves the performance 
of a speaker-dependent system that used six times as much 
speaker-specific training data. When all the SD training data 
are used as adaptation data, the SA system achieves a 50% 
reduction in error rate over the SI system and a 25% reduction 
over the SD system. 

It is difficult to compare our work to other adaptation 
schemes that have appeared in the literature. The results are 
usually confounded by differences in: 

the task complexity. This includes vocabulary size, use 
of a strict language model, noise conditions, etc. 
the type of recognition system and its baseline accuracy. 
Systems that already exhibit a good SI performance may 
show small improvement due to adaptation 
the fluency of the speakers and the test-sample size. 
As we will see in the following section, adaptation 
helps nonnative speakers significantly more than native 
speakers. 

In order to overcome some of these problems and compare 
our algorithm to previous work, we implemented the adap- 
tation algorithm described in [22]. This algorithm is suitable 
only for tied-mixture systems: adaptation of the Gaussians is 
achieved using unconstrained Baum-Welch reestimation and 
there is no mixture-weight adaptation. We built an SI tied- 
mixture system and found that the SI and 40-sentence SA 
word error rates on the six-speaker test set were 17.0 and 
16.1%, respectively. Both of these numbers are higher than 
the 15.5 and 13.6% word error rates that we observed using 
SI phonetically-tied mixtures and our adaptation algorithm. 

Because of the reasons we mentioned above, we can make 
only qualitative comments in comparing our algorithm to 
previous work by others. In [16], Lee and Gauvain obtained 
similar SD and SA recognition performance (3.5% word error 
rate) with 600 sentences on the 1000-word ARPA Resource 
Management (RM) task using context-independent models. 
Our adaptation algorithm achieved 25% lower error than 
SD training when 650 WSJ sentences were used. With 40 
adaptation sentences, their method reduced the SI word error 
rate by 33% (from 6.3 to 4.2%). In our case, we observed 
a 12% reduction. However, both of these differences may be 
attributed to the different domains, the amount of initial SI 
training data, and the quality of the SI models. 

Huang and Lee [ 101 also reported adaptation results on the 
Rh4 task. They used the simple Gaussian reestimation scheme 
proposed by Rtischev [22] and a “pseudo-Bayesian’’ adaptation 
method for the mixture weights that is similar to the one we 
used in our work. On a different test set from the one used 
by Lee and Gauvain, they reported a 4.3% SI word error 
rate and a 2.6% SD word error rate using 600 SD training 
sentences. Their SA results were 3.6, 2.5, and 2.4% using 
40, 300, and 600 adaptation sentences, respectively. Their 
error rates are, in general, lower than the ones in [16]. As 
a consequence, Huang and Lee’s error-rate reduction using 40 
adaptation sentences is smaller (16%) than Lee and Gauvain’s, 
and is comparable to ours. Also, the Huang-Lee method 
achieves 600-sentence SD performance after 300 adaptation 
sentences, and the 600-sentence SA error rate is 8% less than 
the corresponding SD error rate. In our case, we achieved 
650-sentence SD performance after 100 adaptation sentences 
and our 650-sentence SA error rate is 25% lower than the 
corresponding SD error rate. 

B. Adaptation to Nonnative Speakers 

Speaker adaptation becomes a very important technology 
for outlier speakers, since the SI error rate is too high for 
any practical application2. In testing the adaptation algorithm 
on the “spoke 3” task of the phase-1 Wall Street Journal 
corpus [ 141, we focused on improving recognition performance 
for nonnative speakers of American English using adaptation. 
Since the phase-1 corpus was available during this series of 
experiments, the SI systems were built using 17000 training 
utterances from 140 male speakers. To reduce computing 

’This was an additional motivation for all three authors of this paper, who 
are nonnative speakers of American English. Two of the authors are actually 
included in the test sets used in this section’s experiments. 
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SA 

SA 

TABLE I 
SPEAKER-INDEPENDENT (SI) AND SPEAKER-ADAFTED (SA) WORD ERROR RATES FOR THE NONNATIVE SPEAKERS OF 

THE WSJl MALE DEVELOPMENT SET FOR VARIOUS DEGREES OF TYING AND NUMBERS OF TRANSFORMATIONS 

500 

500 

Speaker 

Num. sentences 

Num. words 

200 

SA 200 

::: 
950 

Num. transf. 

40 

200 

200 

500 

200 

950 

requirements we tuned the algorithm using the five male 
speakers in the phase-1 WSJ development data set. A bigram 
language model was used in all of our experiments. The 
evaluation data set was run only once at the end of the 
development phase. The data set includes 40 test sentences and 
40 phonetically balanced adaptation sentences per speaker. The 
speakers were selected according to their fluency in English, 
covering strong to light accents. 

We first tested four different systems to determine the 
optimal degree of Gaussian sharing for this task. All of 
the systems used 11 932 context-dependent phonetic models, 
each with three states. Context dependency was modeled only 
within words, since we had found in preliminary experiments 
that modeling coarticulation across word boundaries does 
not improve recognition performance for nonnative speakers. 
The numbers of genones used in these systems were 40 (1 
genone per phone), 200, 500, and 950. Each genone consisted 
of a mixture of 32 Gaussian distributions. The SI and SA 
performance is shown in Table I. The adaptation was applied 
sequentially to the Gaussian distributions and the mixture 
weights. In general, an increase in the number of genones also 
increases the computational requirements during recognition 
because of the larger number of Gaussian likelihoods that need 
to be evaluated. However, these Gaussian evaluations may be 
sped up using methods like clustering and vector quantization 
[81. 

In genonic HMM's, an arbitrary degree of mixture tying 
across different HMM states can be selected through an 
agglomerative clustering procedure [8]. If the degree of tying 
is small, and consequently the number of genones is large 
(as in the 500- and 950-genone systems in Table I), then a 
large number of transformations may have to be estimated 
during adaptation. We can overcome this problem by using 
tying of the transformations across different genones. and 

4n0 4n3 4n5 4n9 4n0 

41 42 41 42 40 

719 696 664 668 678 

50.3 43.1 23.6 17.7 12.5 

24.1 18.2 17.9 12.4 9.1 

49.4 43.8 24.2 li.1 14.2 

21.4 18.7 18.4 12.0 10.5 

49.9 40.5 22.3 14.i 11.2 

20.2 15.8 16.6 12.3 10.5 

20.0 18.7 17.8 15.1 11.2 

50.5 44 7 20.5 15.3 14.4 

21 1 19.0 16.1 12.0 10.3 

24.2 21.i 18.8 13.5 9.7 

AVGJSUM 

206 

3425 

29.8 

16.5 

30.1 

16.2 

28 7 

15.1 

16.6 

29.5 

15 8 

1 i . i  

the agglomerative clustering scheme used for the genone 
construction is very suitable for this. Each node in the tree 
that is generated during the clustering procedure corresponds 
to a set of states, with the leaves of the tree corresponding to 
single HMM states. The degree of tying used in a particular 
system can be represented by a cut through the tree. The 
location of the cut is determined by the stopping criterion 
of the agglomerative clustering. Thus, if we want to use 
a smaller number of transformations than the number of 
genones in the system, we can somewhat relax the stopping 
criterion (i.e., cluster more aggressively) and determine a 
second cut, at a higher level through the tree. All nodes of the 
original cut (i.e., all genones) that fall under the same node 
of the new cut can share the same transformation. The third 
column in Table I indicates the number of transformations 
used in reestimating the Gaussian distributions. In the first 
two systems, we used one transformation per genone. In the 
remaining two systems with large numbers of genones, we 
grouped the transformations in order to reduce the number of 
parameters to be estimated. 

The SI word error rates for the various systems were 
similar, ranging from 28.7 to 30.1%. By using tying of 
the transformations during adaptation for the 950- and 500- 
genone systems and reducing the number of transformations 
from 950 and 500 to 200, the SA error rates were reduced 
from 17.7 and 16.6% to 15.8 and 15.1%, respectively. The 
SA error rate of 15.1% was the lowest overall for all the 
systems that we examined, and the average improvement due 
to the adaptation algorithm for the five speakers was 47%. 
To evaluate the relative contribution of the two stages of 
our adaptation scheme, we evaluated the SA error rate for 
our best system with the mixture-weight adaptation disabled. 
We found that by adapting the Gaussian codebooks using 
only the constrained estimation method, the SA word error 
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TABLE II 
WORD ERROR RATES FOR THE NONNATIVE SPEAKERS 

OF THE Nov. 1993 WSJl EVALUATION SET 

Kum sentences 

Num sentences 

Num wards 

Type Num genanes 

30.7 31.0 25.0 13.4 28.6 26.1 

S A  19.0 24.5 19.7 10.2 21.0 19.1 

50 50 50 50 50 50 300 

661 643 719 799 928 707 445; !: ~ :: ~ 7.4 16.2 12.i 17.0 11.2 14.9 ~ 13.2 

6.7 14.8 11.3 15.3 11.0 14.1 12.3 

200 5.9 15.9 12.0 17.1 11.5 12.4 12.5 

SA 200 6.2 16.2 13.1 13.9 10.9 12.9 12 2 

5 4 14.8 11.7 15.8 10.0 12.2 11.7 :! ~ i:! ~ 4 8 14.8 12.0 12.8 10.0 11.3 1 :;: 
SA 950 3.8 13.i 11.0 12.4 9.8 10.9 10.3 

4.1 13.5 10.4 16.2 10.3 11.5 

rate was 15.6%. Hence, for continuous HMM’s most of the 
performance gain during adaptation is achieved by adapting 
the Gaussian codebooks. Table I1 shows the results for the 
Nov. 1993 ARPA evaluation set [19] on the 500-genone 
system. In this case, the improvement is 27%. The difference 
between the development and evaluation test sets can be 
attributed to the large variability that is inherent in these 
outlier speakers and the relatively small test-set size. To further 
evaluate the performance of our algorithm, we tested it on 
the full Nov. 1993 evaluation set, including all 10 male and 
female speakers. The SI word error rate was 23.1%, and was 
reduced to 14.8% using our adaptation algorithm. This result 
is comparable to that obtained by Kubala in the official Nov. 
1993 evaluation using a trigram language model [19]. 

To compare the nonnative performance before and after 
adaptation to that of native speakers, we evaluated the same 
four systems on the same speakers that we used in Section 
IV-A. The results are summarized in Table 111. There, we 
see that the SI performance of the more detailed systems 
(with a larger number of Gaussian distributions) is significantly 
better than that of the less detailed ones. This is an important 
difference from the nonnative results. A plausible explanation 
for the nonnative case is that the additional detail of the more 
continuous systems is not needed if the speakers are different 
from the training population. We also observe that for natives 
the SA error rate using 40 utterances is only 7% less than the 

TABLE IV 
SPEAKER-INDEPENDENT (SI) AND SPEAKER-ADAFTED (SA) WORD ERROR 

RATES FOR NATIVE AND NONNATIVE SPEAKERS OF AMERICAN ENGLISH 

SI one, as opposed to the 30 to 50% improvement that we 
observed for nonnatives. Moreover, the improvement is less 
than the 12% decrease in word error that was observed for 
the native speakers in the experiments with the phase-0 WSJ 
corpus, and is not uniform across speakers. Since the phase-1 
WSJ corpus has five times more training data than the phase- 
0 corpus, we can conclude that when a large amount of SI 
training data is available, adaptation is not nearly as effective 
for speakers drawn from a population that matches the training 
data as it is for outlier speakers. 

The SI and SA word-error rates for the best systems and for 
both native and nonnative speakers are summarized in Table 
IV. The SI word error rate for nonnative speakers is 2.5 to 
three times less than that of native speakers. However, after 
adapting with 40 adaptation utterances, the nonnative SA error 
rate is approximately a factor of 1.5 higher than that of native 
speakers. 

V. SUMMARY 

We have presented a new algorithm for the maximum- 
likelihood (ML) estimation of a mixture of Gaussians subject 
to the constraint that all means and covariances are obtained 
through a transformation (that needs to be estimated) from a 
fixed set of component densities. This constrained estimation 
method is well-suited to the speaker adaptation problem for 
continuous mixture-density HMM’s with a large number of 
component densities that are hard to estimate in an uncon- 
strained fashion from a small amount of adaptation data. 

We tested our algorithm on the large-vocabulary WSJ corpus 
on both native and nonnative speakers of American English, 
and on a variety of recognition systems. We found that for 
native speakers the recognition performance after adaptation 
is similar to that of speaker-dependent systems that use six 
times as much training data. With small amounts of adaptation 
data (40 utterances with an average length of 10 seconds) 
the decrease in word-error rate for native speakers is ap- 
proximately 7% and is much larger for nonnative speakers, 
ranging from 30 to 50%. This is a very important result, since 
the speaker-independent word-error rates for outlier speakers, 
such as nonnative speakers, can be 2.5 to three times as high 
as those of native speakers. With speaker adaptation, outlier 
and nonnative speakers can use automatic speech recognition 
at performance levels similar to those of native speakers. 
Thus, the algorithm that we propose can significantly increase 
the usability of continuous mixture-density HMM systems. 
Moreover, we used the WSJ database and our results can serve 
as a benchmark to other researchers who want to evaluate their 
nonnative-speaker adaptation techniques on the same data. 
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We also studied the relationship between adaptation behav- 
ior and degree of mixture sharing in continuous HMM systems. 
We found that with a large amount of speaker-independent 
training, more continuous systems with a large number of 
Gaussians perform better on typical native speakers in both 
their speaker-independent and speaker-adapted modes. How- 
ever, the situation is different for atypical, nonnative speakers. 
For those, increasing the detail in the modeling of context 
dependencies is not as beneficial, since the nonnative speakers 
are less likely to follow the typical coarticulation patterns 
observed in native speakers. The result is that more compact 
systems actually exhibit better adaptation performance because 
there are fewer parameters to adapt. 

Since the results of this study are very encouraging, we 
are currently investigating methods to extend our adaptation 
algorithm to work in an unsupervised manner, that is, when 
the prompting text is not available for adaptation. 

APPENDIX 
DERIVATION OF THE EXPEXTATION AND MAXIMIZATION STEPS 

To apply the EM algorithm to the estimation of a Gaussian 
mixture, we can rewrite the auxiliary function as 

x i=l 

Since the parameters 19 consist of the transformation parame- 
ters [A, b], the second term in the summation does not depend 
on 0, and hence at each EM iteration we need to maximize 
the first term only. 

It is well known that the joint log-likelihood of a collection 
of samples X drawn independently from a multivariate normal 
distribution with mean p and covariance C can be expressed 
as U1 

where the means and covariances are constrained pi = Ami + 
b, Ci = AS;AT. By expanding the summation above, we can 
write 

We can define the sufficient statistics 

ni = P(wiIA0, bo,  x) 
X 

T -1 n n 

n - -trace{C-lE} 
2 

l o g P ( x ) = - - l o g ~ c ~ - - ( p - p )  2 2 c ( p - p )  N u  
T -1 = - 7 [log JCi l+  (pi - Pi) cz 

i=l 
(19) 

7 

where p, 2 are the sample mean and covariance, respectively, 
and n is the number of samples. A similar expression can be 
derived for the first term of the expected log-likelihood in (1 8). 
We first note that this expectation can be written 

(21) 
T - l  1 1 

2 - -(. - Pi) E; (. - Pi) 

(29) 

where in (28) we used the matrix identity zTAz = 
trace{AzzT} for a matrix A and a vector x, and in (29) 
we used the definition of the statistic ci. The equations for 
the computation of the sufficient statistics comprise the E-step 
of the algorithm, and are summarized in ( 5 )  through (7). 

To derive the M-step of the algorithm, we first rewrite (29) 
using the transformation parameters 

J (pi - p i )  + trace{c;'Z:i} 

qe ; e , )  = 
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where we have assumed that the transformation matrix A has 
full rank. By taking the gradient of C(0; 0,) with respect to the 
transformation parameters A ,  b we find the following system 
of equations: 

i=l 

Under the assumption of diagonal covariance matrices and 
diagonal transformation matrices, the multidimensional case 
is equivalent to a set of 1-D problems that can be solved 
independently. The auxiliary function can be written in this 
case as 

A-& n 
2 

q e :  e,) = - 2 [log s; + log u2 
2 = 1  

( f i t  - am, - b)2  u2 + *I. (33) 
a2sf a 3, 

+ 

By maximizing this quantity with respect to the transformation 
parameters a. b we can easily derive (9) and (10). 
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